

Available online at www.sciencedirect.com

Mendeleev Commun., 2006, 16(2), 90-92

Mendeleev Communications

Transformation of 20-hydroxyecdysone to inokosterone

Rimma G. Savchenko, Ruslan V. Shafikov, Svetlana R. Afonkina and Viktor N. Odinokov*

Institute of Petrochemistry and Catalysis, Ufa Scientific Centre of the Russian Academy of Sciences, 450075 Ufa, Russian Federation. Fax: +7 3472 31 2750; e-mail: ink@anrb.ru

DOI: 10.1070/MC2006v016n02ABEH002258

 Δ^{24}/Δ^{25} -Derivatives of 20-hydroxyecdysone were hydroborated by sodium borohydride in the presence of CuCl followed by oxidation of organoboron intermediate and deblocking of hydroxyl groups to synthesise the zoo- and phytoecdysteroid inokosterone.

The ecdysteroid inokosterone was originally identified in insect¹ and then isolated from plants.²-3 Studies of the structure and absolute configuration of inokosterone isolated from roots of a Chinese plant *Achyranthes fauriei*² showed the phytoecdysteroid to be a mixture (1:2) of C²5(R)- and (S)-epimers.⁴ When isolated from *A. fauriei*³ inokosterone was used in a synthesis of 26-iodoponasterone.⁶ The latter has a very high ecdysone activity, which is 16 times higher than that of 20-hydroxyecdysone, and this permits its use in studies of insect ecdysone receptors.⁷

In order to establish its structure, inokosterone was synthesised from a formylpregnane.⁴ A full synthesis of the latter had been carried out previously.⁸ The authors have developed a new approach to the synthesis of inokosterone **6**, based on chemical transformations of the more readily available phytoecdysteroid 20-hydroxyecdysone **1**.⁹ Thus, a mixture (3:2) of

diacetonides of Δ^{24}/Δ^{25} -derivatives of 20-hydroxyecdysones 2, prepared in two steps 10 from 1, was subjected to a hydroboration reaction with NaBH4 catalysed by CuCl (NaBH4–CuCl reagent was used previously for α -olefin hydroboration 11). Oxidation of the organoboron intermediate by the H_2O_2 –AcONa reagent led to inokosterone diacetonide 3.† Along with the required compound an inseparable mixture of more polar compounds and initial mixture of alkenes 2 were isolated (according to 1H NMR spectral data, the Δ^{24}/Δ^{25} -alkene ratio is \approx 3:2 as in the initial mixture). The yield of 3 shows that the Δ^{25} -alkene in the initial mixture 2 is commonly transformed to 26-hydroxyderivative, while during the oxidation of the organoboron intermediate, the nonreacted Δ^{24} -alkene probably isomerises to the terminal position and an alkene mixture is formed with the ratio (3:2) Δ^{24}/Δ^{25} -isomers that was stated in dehydration of 1, respectively. 10

Scheme 1 Reagents and conditions: i, NaBH₄/CuCl, THF, 20 °C, H₂O₂/AcONa; ii, Ac₂O/Py/DMAP; iii, AcOH/ZnCl₂; iv, 10% HClO₄–MeOH, 1:1.

Two single-proton signals at 3.64 and 3.48 ppm in the ¹H NMR spectrum and a carbon signal C²⁶ at 68.03 ppm in the ¹³C NMR spectrum reveal the appearance of hydroxyl at C²⁶ in compound **3**. The presence of two doublets (*J* 6.5 Hz) H₃C²⁷ of equal intensities at 0.93 and 0.94 ppm in the ¹H NMR spectrum shows that compound **3** is an equimolar mixture of 25*R*-and 25*S*-epimers. A similar picture is observed in this part of ¹H NMR spectra for diacetonide 25-acetate **4**.[‡] In its ¹³C NMR spectra two signals for the carbonyls of the acetate groups were observed. An acetylation of hydroxyl group at C²⁶ leads to a shift of C²⁷ signal to a low field, and C²⁵ signal – to a high one and a doubling of their signals in the ¹³C NMR spectrum of compound **4** (a result of the presence of epimers at 25-tertiary centre).

Under the normal conditions of the removal of an acetonide protection in ecdysteroids (AcOH/ZnCl₂)¹² the hydrolysis of **3**

† Hydroboration–oxidation of **2**. To a solution of **2** (a mixture Δ^{24}/Δ^{25} -alkenes, 3:2, prepared by method¹⁰) (0.3 g, 0.55 mmol) in dry THF (20 ml) was added CuCl (0.056 g, 0.56 mmol) with mixing, the mixture was cooled to 0 °C and NaBH₄ (0.021 g, 0.55 mmol) was added in one portion. After 20 min temperature was raised to ~20 °C for 8 h. Then at 0 °C H₂O (1 ml), H₂O₂ (0.2 ml, 20%) and solution of NaOAc (0.082 g, 1 mmol) in H₂O (1 ml) were added to the reaction mixture. The organic layer was separated from water, extracted by EtOAc. The common organic layers were washed by NaCl, dried by MgSO₄ and evaporated under vacuum. A residue was chromatographed (SiO₂) eluating by chloroform to give an initial mixture of alkenes **2** (0.08 g, $R_{\rm f}$ 0.64, Silufol, CHCl₃–MeOH, 10:1), **3** (0.12 g, 38.5% or 97% taking into account Δ^{25} -alkene in **2**, $R_{\rm f}$ 0.48) and a mixture of polar compounds (0.1 g, $R_{\rm f}$ 0.25–0.36).

For **3**: mp 130–132 °C, $[\alpha]_D^{27}$ +23.2° (c 5.82, CHCl₃). IR (KBr, ν /cm⁻¹): 1680, 3450. ¹H NMR (300.13 MHz, CDCl₃) δ: 0.79 (s, 3H, H₃C¹⁸), 0.93 and 0.94 (2d, 3H, H₃C²⁷, J 6.5 Hz), 0.98 (s, 3H, H₃C¹⁹), 1.14 (s, 3H, $\rm H_3C^{21}$), 1.32 and 1.41 (2s, 6H, 20,22-Me₂C), 1.33 and 1.49 (2s, 6H, 2,3-Me₂C), 1.50–2.26 (m, 18H, HC, H₂C), 2.34 (dd, 1H, HC⁵, $\it J$ 12.5 and 4.4 Hz), 2.81 (m, 1H, HC⁹, $w_{1/2}$ 22.0 Hz), 3.48 (m, 2H, HC²², H_aC²⁶, $w_{1/2}$ 10.0 Hz), 3.64 (dd, 1H, H_bC²⁶, J 10.4 and 5.5 Hz), 4.23 (m, 2H, HC², HC³, $w_{1/2}$ 10.0 Hz), 5.82 (br. s, 1H, HC⁷, $w_{1/2}$ 6.0 Hz). ¹³C NMR [75.47 MHz, CDCl₃, the signals were assigned using a pulse sequence of *J*-modulated spin echo (JMOD)] δ : 16.58 and 16.64 (C²⁷), 17.03 (C¹⁸), 20.54 (C¹⁶), 21.19 (C¹¹), 21.89 (C²¹), 23.60 (C¹⁹), 26.42 and 28.50 (2,3-Me₂C), 26.87 and 29.00 (20,22-Me₂C), 26.67 (C²³), 30.65 (C¹⁵), $30.87 \ (C^{12}), 31.03 \ (C^{24}), 31.61 \ (C^4), 34.58 \ (C^9), 35.77 \ and 35.81 \ (C^{25}),$ 37.59 (C1), 37.75 (C10), 47.48 (C13), 49.08 and 49.14 (C17), 50.78 (C5), $68.03\ (C^{26}),\ 71.62\ (C^{3}),\ 72.16\ (C^{2}),\ 81.55\ and\ 81.64\ (C^{22}),\ 84.12\ and$ 84.16 (C¹⁴), 84.95 and 85.00 (C²⁰), 106.84 and 106.88 (20,22-Me₂C), 108.27 (2,3-Me₂C), 121.34 (C⁷), 163.23 and 163.29 (C⁸), 202.80 (C⁶). Found (%): C, 70.68; H, 9.35. Calc. for C₃₃H₅₂O₇ (%): C, 71.07; H, 9.21.

leads only to 20,22-acetonide of inokosterone $5.^{\ddagger}$ The treatment of acetonide 5 or diacetonide 3 by a different method⁶ gives inokosterone $6.^{\ddagger}$

[‡] For 4: R_f 0.68 (Silufol, CHCl₃–MeOH, 10:1), mp 96–98 °C, $[\alpha]_D^{18}$ $+25.5^{\circ}$ (c 2.6, CHCl₃). ¹H NMR (CDCl₃) δ : 0.77 (s, 3H, H₃C¹⁸), 0.90 and 0.94 (2d, 3H, H_3C^{27} , J 6.7 Hz), 0.95 (s, 3H, H_3C^{19}), 1.11 (s, 3H, H₃C²¹), 1.30 and 1.38 (2s, 6H, 20,22-Me₂C), 1.30 and 1.47 (2s, 6H, 2,3-Me₂C), 2.03 (s, 3H, MeCOO), 1.50–2.26 (m, 18H, CH, CH₂), 2.31 (dd, 1H, HC⁵, J 12.4 and 4.1 Hz), 2.80 (m, 1H, HC⁹, $w_{1/2}$ 25 Hz), 3.60 (m, 1H, HC²², w_{1/2} 15 Hz), 3.73–4.05 (m, 2H, HC²⁶), 4.23 (m, 2H, HC², HC³, $w_{1/2}$ 15 Hz), 5.79 (br. s, 1H, HC⁷, $w_{1/2}$ 5 Hz). ¹³C NMR, δ: 17.03 (C^{18}) , 17.28 and 18.39 (C^{27}) , 20.51 (C^{16}) , 20.90 (MeCOO), 21.15 (C^{11}) , 21.83 (C²¹), 23.53 (C¹⁹), 26.37 and 28.45 (2,3-Me₂C), 26.62 (C²³), 26.81 and 28.93 (20,22-Me₂C), 29.58 (C¹⁵), 30.69 (C¹²), 30.99 (C²⁴), 31.50 (C⁴), 32.48 and 32.69 (C^{25}), 34.52 and 34.57 (C^9), 37.55 (C^1), 37.69 (C^{10}), 47.44 and 47.49 (C13), 48.80 and 49.06 (C17), 50.74 (C5), 69.20 (C26), 71.58 (C3), 72.11 (C2), 81.35 and 81.43 (C22), 83.80 and 84.08 (C14), $84.80\ (C^{20}),\ 106.83\ and\ 106.91\ (20,22\text{-}Me_2C),\ 108.18\ (2,3\text{-}Me_2C),\ 121.26$ (C^7) , 163.35 (C^8) , 170.47 and 171.20 (MeCOO), 202.76 (C^6) . Found (%): C, 69.74; H, 9.03. Calc. for $C_{35}H_{54}O_{8}$ (%): C, 69.78; H, 9.00.

For 5: $R_{\rm f}$ 0.67 (Silufol, CHCl₃–MeOH, 5:1), mp 118–120 °C, $[\alpha]_{\rm b}^{\rm l}$ +47.4° (c 2.2, CHCl₃). IR (KBr, $\nu/{\rm cm}^{-1}$): 1640, 3280. UV [CHCl₃, $\lambda_{\rm max}/{\rm nm}$ (ϵ)]: 242 (12000). ¹H NMR (CDCl₃) δ : 0.79 (s, 3H, H₃Cl₈), 0.96 (m, 3H, H₃C²⁷, $\nu_{\rm l/2}$ 7 Hz), 0.97 (s, 3H, H₃Cl₉), 1.15 (s, 3H, H₃Cl₁), 1.33 and 1.41 (2s, 6H, 20,22-Me₂C), 1.50–2.50 (m, 19H, HC, CH₂), 3.03 (m, 1H, HC⁹, $\nu_{\rm l/2}$ 19.6 Hz), 3.47 (m, 1H, HC²², $\nu_{\rm l/2}$ 12 Hz), 3.65 (m, 2H, HC²⁶, $\nu_{\rm l/2}$ 20.0 Hz), 3.85 (m, 1H, HC², $\nu_{\rm l/2}$ 17.4 Hz), 3.99 (m, 1H, HC³, $\nu_{\rm l/2}$ 12 Hz), 5.84 (br. s, 1H, HC⁷, $\nu_{\rm l/2}$ 6.0 Hz). ¹³C NMR, δ : 16.62 and 16.69 (C²⁷), 17.07 (Cl⁸), 20.50 (Cl⁶), 21.20 (Cl¹¹), 21.92 (Cl²¹), 23.90 (Cl⁹), 26.50 (C²³), 26.90 and 29.01 (20,22-Me₂C), 30.10 (Cl⁵), 31.02 (Cl²²), 31.50 (C⁴), 31.35 (C²⁴), 35.58 and 35.91 (C²⁵), 34.20 (C⁹), 36.62 (Cl), 38.18 (Cl⁰), 47.27 (Cl³), 49.11 and 49.17 (Cl⁷), 50.06 (C⁵), 67.39 (C³), 67.73 (C²), 67.85 (C²⁶), 81.20 and 81.30 (C²²), 84.19 (Cl⁴), 84.86 (C²⁰), 106.87 (20,22-Me₂C), 121.42 (C⁷), 165.39 (C⁸), 204.47 (C⁶). Found (%): C, 69.20; H, 9.29. Calc. for C₃₀H₄₈O₇ (%): C, 69.27; H, 9.21.

For **6**: $R_{\rm f}$ 0.24 (Silufol, CHCl₃–MeOH, 5:1), mp 176–178 °C, $[\alpha]_{\rm D}^{22}$ +48.7° (c 0.8, MeOH) [cf. for mixture (1:2) 25R/S-epimers: mp 255 °C, $[\alpha]_{\rm D}^{27}$ +59.4° (c 0.78, MeOH)¹³]. IR (KBr, $\nu/{\rm cm}^{-1}$): 1660, 3240. ¹H NMR (C₅D₅N) δ : 1.04 (d, 3H, H₃C²⁷, J 6.9 Hz), 1.06 (s, 3H, H₃C¹⁹), 1.22 (s, 3H, H₃C¹⁸), 1.57 and 1.59 (2s, 3H, H₃C²¹), 1.70–2.70 (m, 17H, HC, H₂C), 2.95–3.05 (m, 2H, HC⁵, HC¹⁷), 3.60 (m, 1H, HC⁹, $\nu_{1/2}$ 22 Hz), 3.65–3.82 (m, 2H, H₂C²⁶), 3.86 (dd, 1H, HC²², J 10.1 and 1.4 Hz), 4.21 (m, 1H, HC², $\nu_{1/2}$ 22 Hz), 4.28 (m, 1H, HC³, $\nu_{1/2}$ 8 Hz), 6.26 (d, 1H, HC⁷, J 2.0 Hz) (cf: refs. 3, 4 and 13). ¹³C NMR, δ : 17.06 (C²⁷), 17.64 (C¹⁸), 20.82 (C¹⁶), 21.40 (C¹¹), 23.07 (C²¹), 24.07 (C¹⁹), 29.21 (C⁴), 31.42 (C²³), 31.80 (C¹², C¹⁵, C²⁴), 34.13 (C⁹), 36.48 (C²⁵), 37.68 (C¹), 38.41 (C¹⁰), 47.59 (C¹³), 49.78 (C¹⁷), 50.96 (C⁵), 67.11 (C²⁶), 67.78 (C³), 68.00 (C²), 73.27 (C²²), 76.65 (C²⁰), 83.92 (C¹⁴), 121.38 (C⁷), 166.16 (C⁸), 203.10 (C⁶) (cf: ref. 13).

Thus, the four-step transformation of the readily available ecdysteroid 20-hydroxyecdysone to 25R/S-inokosterone was developed, a key step in which is hydroboration.

This work was supported by the Russian Foundation for Basic Research (project nos. 04-03-33103 and 05-03-97912).

References

- 1 (a) M. J. Thompson, J. N. Kaplanis, W. E. Robbins and R. T. Yamamoto, J. Chem. Soc., Chem. Commun., 1967, 13, 650; (b) J. N. Kaplanis, W. E. Robbins, M. J. Thompson and S. R. Dutky, Science, 1973, 180, 307; (c) J. N. Kaplanis, M. J. Thompson, S. R. Dutky and W. E. Robbins, Steroids, 1979, 34, 333; (d) D. R. Greenwood and G. B. Russell, Experientia, 1978, 34, 687; (e) J. Koolman, L. Reum and P. Karlson, Hoppe-Seyler's Z. Physiol. Chem., 1979, 360, 1351.
- 2 (a) T. Takemoto, S. Ogawa and N. Nishimoto, Yakugaku Zasshi, 1967, 87, 325; (b) T. Takemoto, S. Ogawa and N. Nishimoto, Yakugaku Zasshi, 1967, 87, 1474.
- 3 V. V. Volodin, V. G. Luksha, L. Dinan, V. V. Punegov, L. I. Alekseeva, N. A. Kolegova, Yu. A. Tyukavin and A. I. Rebrov, *Fiziologiya Rastenii*, 1998, 45, 378 (*Russ. J. Plant Physiol.*, 1998, 45, 322).

- 4 H. Hikino, K. Mohri, S. Arihara, Y. Hikino, S. Arihara, T. Takemoto, H. Mori and K. Shibata, *Tetrahedron*, 1976, **32**, 3015.
- 5 P. Cherbas, L. Cherbas, S.-S. Lee and K. Nakanishi, *Proc. Natl. Acad. Sci. USA*, 1988, **85**, 2096.
- 6 Sh.-Sh. Lee, K. Nakanishi and P. Cherbas, J. Chem. Soc., Chem. Commun., 1991, 51.
- 7 W. A. Segraves and G. Richards, Invertebr. Reprod. Devel., 1990, 18, 67.
- 8 H. Mori and K. Shibata, Chem. Pharm. Bull., 1969, 17, 1970.
- 9 V. N. Odinokov, I. V. Galyautdinov, D. V. Nedopekin, L. M. Khalilov, A. S. Shashkov, V. V. Kachala, L. Dinan and R. Lafont, *Insect Biochem. Mol. Biol.*, 2002, 32, 161.
- B. Yingyongnarongkul and A. Suksamrarn, Tetrahedron, 1998, 54, 2795
- 11 S. Achyutha Rao and M. Periasamy, J. Organomet. Chem., 1986, 309, 39.
- 12 A. Suksamrarn and P. Pattanaprateen, *Tetrahedron*, 1995, **51**, 10633.
- 13 R. D. Lafont and I. D. Wilson, *The Ecdysone Handbook*, 3rd edn., Chromatographic Society, Nottingham, UK, 2000, vol. 2, p. 395.

Received: 25th October 2005; Com. 05/2599